منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولApproximation Methods for Solving the Equitable Location Problem with Probabilistic Customer Behavior
Location-allocation of facilities in service systems is an essential factor of their performance. One of the considerable situations which less addressed in the relevant literature is to balance service among customers in addition to minimize location-allocation costs. This is an important issue, especially in the public sector. Reviewing the recent researches in this field shows that most of t...
متن کاملOn a Probabilistic Algorithm Solving Discrete Logarithm Problem
Recently, Gadiyar et al. presented a probabilistic algorithm solving discrete logarithm problem over finite fields. In this paper, we compare the running time of this algorithm with Pollard’s rho algorithm and we improve the required memory of the algorithm as a negligable memory by using some collision detection algorithms. 2000 Mathematics Subject Classification: 11Y16.
متن کاملNew approaches for solving the Probabilistic Traveling Salesman Problem
The Probabilistic Traveling Salesman Problem (PTSP) is a TSP problem in which each customer requires a visit only with a given probability, independently of the others. The goal is to find an a priori tour of minimal expected length over all customers, with the strategy of visiting a random subset of customers in the same order as they appear in the a priori tour. The PTSP is NP-hard, and only ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mechanical Engineering
سال: 2002
ISSN: 0025-6501,1943-5649
DOI: 10.1115/1.2002-jan-4